ST. XAVIER'S SENIOR SECONDARY SCHOOL, DELHI - 110 054 Class 10 12-9-2014

Summative Assessment I in MATHEMATICS

Time : 3 hrs. M. Marks: 90

General Instructions:

- Attempt all the questions. 1.
- This guestion paper consists of 31 guestions divided into four sections A, B, C and D. 2. Section A comprises of 4 questions of 1 mark each, section B comprises of 6 questions of 2 marks each, section C comprises of 10 questions of 3 marks each and section D comprises of 11 questions of 4 marks each.

Section – A $(4 \times 1 = 4 \text{ marks})$

- Without actually using long division, find the decimal form of $\frac{7}{80}$. 1.
- Write the quadratic polynomial, whose zeroes are 1 & -2. 2.
- \overline{x} is the arithmetic mean of n observations $x_1, x_2, ..., x_n$, find the arithmetic mean of 3. If ax₁, ax₂,...,ax_n.
- 4. State 'Fundamental Theorem of Arithmetic'.

Section
$$-B$$
 (6 x 2 = 12 marks)

Μ

R

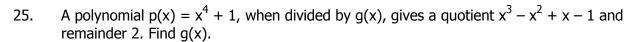
- 5. If 15 CotA = 8, then find SinA & SecA.
- Find the HCF of 82 & 396 by Euclid's division algorithm. 6.
- 7. IF x + a is a factor of $2x^2 + 2ax + 5x + 10$, then find 'a'.
- In the fig. LM || AB. If AL = x 3, 8. AC = 2x, BM = x - 2 & BC = 2x + 3,then find x.

Write the empirical relationship between the mean, median and mode. Also find the 10. mode of a data if its median is 20 and mean is 18.

> Section – C $(10 \times 3 = 30 \text{ marks})$

- In △ABC, DE || BC, where D & E are points on AB & AC respectively. 11. If DE = $\frac{2}{2}$ BC & area(\triangle ABC) = 81 cm², find the area(\triangle ADE).
- Show that $5 \sqrt{7}$ is an irrational number. 12.
- 13. Prove that SecA(1 - Sin A)(SecA + tanA) = 1.
- 14. The father's age is 3 years more than 3 times the son's age. 3 years hence, the age of father will be 10 years more than twice the son's age. Find their present ages. (Use elimination method).
- 15. Find the mode of the following data: Classes 0 - 50 50 - 100100 - 150 150 - 200200 - 25012 Frequency 13 15 8 12
- Show that $tan48^{\circ}tan23^{\circ}tan42^{\circ}tan67^{\circ} = 1$. 16.
- If α and β are the zeroes of $x^2 2x 15$, then form a quadratic polynomial, whose 17. zeroes are 2α and 2β .

18. During a survey of 40 cities for ascertaining the literacy rate, following data was obtained.


Literacy rate (%)	45 – 55	55 – 65	65 – 75	75 – 85	85 – 95
No. of cities	4	11	12	9	4

Find the mean literacy rate for the data. What value is indicated from the data?

- 19. Find the zeroes of $p(t) = t^2 15$. Also verify the relation between the zeroes and the co-efficients.
- 20. Find the value of k for which kx + 3y = k 3 & 12x + ky = k represent coincident lines.

Section -D (11 x 4 = 44 marks)

- 21. Show that the square of an odd position integer can be of the form 6m + 1 or 6m + 3 for some integer m.
- 22. Prove that in a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the first side is a right angle.
- 23. $(SinA + CosecA)^2 + (CosA + SecA)^2 = 7 + tan^2A + Cot^2A.$
- 24. In the fig., if AD \perp BC, & BD = 3CD, then prove that 2 AB² = 2 AC² + BC².

- 26. $\frac{\tan\theta}{1-\cot\theta} + \frac{\cot\theta}{1-\tan\theta} = 1 + \sec\theta \csc\theta.$
- 27. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
- 28. Find the missing frequency in the following frequency distribution table, if mean is 50.

(Class interval	0 - 20	20 – 40	40 - 60	60 - 80	80 - 100	Total
	Frequency	17	f1	32	f2	19	120

29. Prove that $\frac{\sin\theta - \cos\theta + 1}{\sin\theta + \cos\theta - 1} = \frac{1}{\sin\theta}$

 $\frac{sin\theta - \cos\theta + 1}{sin\theta + \cos\theta - 1} = \frac{1}{sec\theta - tan\theta} \quad \text{using } sec^2\theta - tan^2\theta = 1.$

- 30. Draw the graphs of the following equations 2x y = 1 & x + 2y = 13, and
 - i) Find the solution of the equations from the graph.
 - ii) Shade the region formed by the lines and the y-axis.
- 31. During a medical check up of 35 students of a class, their weights were recorded as

Weights (in Kg)	No. of students		
36 – 38	0		
38 – 40	3		
40 - 42	2		
42 – 44	4		
44 – 46	5		
46 - 48	14		
48 – 50	4		
50 – 52	3		

Convert the distribution into a less than type cumulative frequency distribution and draw its ogive. Also obtain median weight from the graph.

-X-X-X-X-X-X-X-